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i. Jónsson Algebras in Logic

๠e recently deceased Bjarni Jónsson was an Icelandic algebraist and logician. As such, his work borders the two
fields. Of the many concepts named after him, Jónsson algebras themselves are somewhat more general than what is
presented here due to a broader use of the work “algebra” by logicians. In logic, an algebra is any class equipped with
a countable number of operations. In this sense, groups, rings, etc. are all algebras. In the sense of the majority of
algebra, however, these are not all algebras, and so the terminology used here reflects this restricted usage. Instead of
“Jónsson algebra” as in the literature, “Jónsson structure” will be used to avoid confusion.

In logic, “Jónsson” is seen more as a property of cardinals than of structures. ๠at is to say that what is important is
whether an (infinite) cardinal admits a Jónsson structure rather than what structures are Jónsson. ๠is combinatorial
property poses interesting questions for infinitary combinatorics. In particular, the question whether ℵ! admits a
Jónsson structure is still open, although the answer is “yes” for all cardinals below ℵ![2]. Really, however, the open
question is whether it’s independent that ℵ! admits a Jónsson structure. ๠e answer to whether cardinals admit Jónsson
structures can be tied to so called “large cardinal” axioms, which are independent of the standard basis of mathematics
ZFC [2]. Logic, however, is more interested in the non-existence of Jónsson structures on cardinals. In fact, a cardinal
is called Jónsson if there are no Jónsson structures on it [1]! One thing to be gleamed from this is that we can’t prove
there are no Jónsson structures on any given cardinal.

Now the usage of “Jónsson” used here will actually be slightly more general than in logic. In some sense, there is some
cheating going on with the notion of “structure” as opposed to “algebra” that forbids taking trivial examples of Jónsson
structures on ℵ! for example. In particular, structures like vector spaces aren’t necessarily “algebras” in the logical
sense. When we’ve fixed a field F , we’re adding unary operations corresponding to scalar multiplication: v 7! f � v

for each f 2 F . If F is uncountable, then the structure won’t be an “algebra” in the sense of logic, because the logic
usage requires at most countably many operations.
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๠is does not mean that Jónsson structures are worthless for the study of algebra. ๠e concept of being Jónsson can be
separated from the stricter sense used in logic. In some sense, the property of being Jónsson is a weakening of certain
kinds of simplicity, like for modules. As such, the existence and construction of simple structures is even harder than
that of Jónsson ones. But this weakening can still yield fruitful results, as the search for Jónsson structures actually
motivated the discovery of a simple group on ℵ1 [5]. And of course, as an algebraist himself, Bjarni thought them
worthy enough of algebraic study.
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Section 1. Introduction and Examples

Recall that a module is called “simple” iff it has no non-trivial submodules. ๠e property of being Jónsson is related to
this kind of simplicity. We allow substructures, but they must be smaller. Denote cardinality with j � j so that jNj D ℵ0.
An overview of some basic cardinal arithmetic is given in Appendix A.

1 • 1. Definition

A structure W is called Jónsson iff every substructure V < W satisfies jV j < jW j.

Note that this definition is really a definition scheme. For different notions of structure, there are different notions of
being Jónsson. For example, a group is Jónsson iff every proper subgroup has smaller cardinality. A vector space or
module is Jónsson iff every proper submodule is smaller. A field is Jónsson iff every proper subfield is smaller, and so
on and so forth. One immediate result of this is that every finite structure is Jónsson. ๠is is because any proper subset
of a finite set is smaller in cardinality, demonstrating just how weird finite numbers are.

Now let’s start off with some examples of infinite Jónsson structures. Our first example will be a Jónsson group. ๠is
group will be a countably infinite Jónsson group, meaning that it’s an infinite group with no infinite proper subgroup.
๠is example will come to be fairly important for the results about groups.

1 • 2. Example (1 • 2. Example 1)

Let p 2 N be prime. Define Z.p1/ WD ZŒ1=p�=Z under the operation of (modular) addition.

We will later see in Section 2 that these are the only infinite, abelian, Jónsson groups, meaning that all abelian, Jónsson
groups are actually only countable. Note that the elements of Z.p1/ will be finite sums of the formX

i�N

mi

pni
,

for mi 2 Z and ni 2 N. But we can rewrite this as just one fraction m=pN . Furthermore, because we’ve “modded
out” by Z, we can assume jmj < pN , and gcd.m; p/ D 1. It’s interesting to note that this Z.p1/ is isomorphic to
Qp=Zp , the p-adic numbers modulo the p-adic integers. ๠is group is commonly called the p-quasicyclic group, or
the Prüfer p-group after Heinz Prüfer [2].

First note that Z.p1/ is always countably infinite.

1 • 3. Result

Let p 2 N be prime. ๠us jZ.p1/j D ℵ0.

Proof .:.
jZ.p1/j � ℵ0, since we have for each n 2 N, a 1=pn 2 Z.p1/.

jZ.p1/j � ℵ0, since its elements are of the form m=pn for m; n 2 Z, meaning jZ.p1/j � jQj D ℵ0. a

Now we will show that all of the proper subgroups of Z.p1/ are finite. In doing so, we will actually show that all the
subgroups are cyclic groups of order pn for some n 2 N. ๠is makes sense by noting that Z.p1/ can also be written
in the form

Z.p1/ D
[
n2N

Z=pnZ

where we take appropriate isomorphisms on the Z=pnZs in order to make the group operation intelligible.

1 • 4. Result

For p 2 N prime, Z.p1/ is an infinite, Jónsson group.

1



Jඬඇඌඌඈඇ Aඅ඀ൾൻඋൺඌ Sൾർඍංඈඇ 1

Proof .:.
Note that Z.p1/ is generated by the elements 1=pn for n 2 Z. Hence if ¹0º < H < Z.p1/ is a proper
subgroup, then there is a least � > 1 for which 1=p�C1 … H . Note that if 1=pn 2 H for n > �, then
h1=p�C1i � h1=pni � H , because pn��=pn 2 h1=pni. So � is the maximal n for which 1=pn 2 H .

We will show that in fact H D h1=p�i. So let m=pn D h 2 H in reduced form be arbitrary. ๠is means that
there are a; b 2 Z where amC bpn D 1. It then follows that

1

pn
D .amC bpn/

1

pn
D
am

pn
C b D ahC b.

Since Z.p1/ is modulo Z and b 2 Z, ah C b D ah 2 H . So h 2 h1=pni � h1=p�i. Hence H � h1=p�i,
and we have equality.

But note that the order of 1=p� is just p� . Hence by Result 1 • 3 jH j D p� < ℵ0 D jZ.p1/j. a

So there are infinite, Jónsson groups. What about other kinds of structures? Well it’s easy to show that 1-dimensional
vector spaces are always Jónsson. In the case that the field is infinite, we have an infinite, Jónsson vector space. In
particular, consider the following example.

1 • 5. Example

Consider the complex numbers C as a vector space over C as a field.

๠e choice ofC isn’t terribly important, as any field F also has the following result. But in an effort to be more concrete,
I’ll consider C as an example.

1 • 6. Result

C is a Jónsson vector space over C.

Proof .:.
Suppose M � C is a subspace of C. If M D ¹0º, then we’re done: jM j D 1 < jCj. Otherwise, take some
non-0 element m 2 M . As a subspace,M is closed under scalar multiplication. As a field, 1=m 2 C. Hence
for any c 2 C, .c=m/ �m D c 2 M , meaningM D C. ๠usM D ¹0º orM D C. a

๠is very simple proof alludes to the idea that begin Jónsson is, just like simplicity, contingent on what kind of structure
a thing is regarded as. As a field, C is not Jónsson, since jRj D jCj D 2ℵ0 .

Now we can actually provably say that all infinite Jónsson vector spaces are of this form: a line. Hence all Jónsson
vector spaces are finite or else just a line. In proving this, we rely on a recalled result of the cardinality of vector spaces.

1 • 7. Result (Recalled 1)

For V a vector space over a field F of dimension dimV D d .

jV j D

´
jF jd if d < ℵ0

max.jF j; d / if d � ℵ0

.

๠e proof of this result isn’t so difficult, but is overly long, and so is relegated to Appendix B. ๠e reason why jV j

depends on whether the dimension is infinite is a result of the fact that the elements of V are only finite sums of basis
elements. ๠e following result tells us that only finite vector spaces, and vector spaces of dimension 1 are Jónsson
vector spaces.

1 • 8. Result

A vector space V over a field F is Jónsson iff dim.V / D 1, or dim.V / < ℵ0 and jF j < ℵ0.

2
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Proof .:.
(only if) Suppose V is Jónsson. We consider two cases: if dim.V / is infinite, and if F is infinite.

First, suppose dim.V / is infinite with B � V a basis, and b 2 B . Consider the set B n ¹bº and
the subspace generated by this: Y D span.B n ¹bº/. ๠is does not contain b since B is a linearly
independent set. So Y < V . But V and Y have the same dimension, since jB n ¹bºj D jBj. By
Recalled 1 (1 • 7), V and Y have the same cardinality, so that Y witnesses that V isn’t Jónsson.
Now suppose F is infinite. We may assume by the above that dimV D d is finite. But as an infinite
set, jF j D jF j2. Hence jF j D jF jn for all positive n 2 N. So by Recalled 1 (1 • 7), jV j D jF j.
Let B � V be a basis of V . If d ¤ 1, then B has at least two elements, and so for b 2 B , B n ¹bº is
non-empty. ๠e subspace generated by this, Y D span.B n ¹bº/, has dimension d � 1 > 0. Hence
we again have Y < V , but jY j D jF jd�1 D jF j D jV j. So Y witness that V isn’t Jónsson.

(if) If dim.V / D 1, then V has no nontrivial, proper subspaces, and so is Jónsson trivially. Similarly, if
dim.V / and F are both finite, then by Recalled 1 (1 • 7), V is finite, and so trivially Jónsson. a

Again, this says that being a Jónsson vector space is very rare, and the ones that are Jónsson are uninteresting: being
finite or else a line. Now despite being vector spaces, related notions like Jónsson algebras are much more difficult
to characterize since not all subspaces will be subalgebras. Even in the case of group algebras it’s not always clear,
since subalgebras don’t necessarily correspond to subgroups. Yet there’s more we can say about other structures. In
particular, there are rich results for modules and groups, as Section 2 describes. ๠is section ends with a note about
prime fields, and the discussion of Jónsson fields will be picked back up in Section 3.

1 • 9. Example

Consider Q as a field.

We know that Q is not a Jónsson group, since the integers Z 6 Q are a countable subgroup. We do know, however,
that Q is a Jónsson Q-vector space. But as a field, we can also show that Q is Jónsson as an immediate corollary to
the following result. Because Q has no proper subfields, it is trivially a Jónsson field.

1 • 10. Result

Q has no proper subfields.

Proof .:.
Let F � Q be a subfield of Q. Any f 2 F must have 1=f 2 F so that 1 2 F . Hence being closed under
addition yields that Z � F . ๠erefore 1=n 2 F for any n 2 Z so thatm=n 2 F for anym; n 2 Z. ๠us Q � F
and we conclude equality. a

So there are Jónsson fields on ℵ0, and so on all n < ℵ1. An interesting result is that there are no uncountable Jónsson
fields at all. Proving this is relegated to Section 3, and relies on results about transcendental elements.

Note that the above result together with Section 3 tells us that Q is the only Jónsson field of characteristic 0.

Section 2. Jónsson Groups and Modules

So we’ve given a few examples of infinite Jónsson structures, but they haven’t all been very complicated. ๠is is
because Jónsson structures are actually quite difficult to construct, and quite difficult to check that they are really
Jónsson. Despite these difficulties, however, there are still interesting results about such structures. Some of these can
even help characterize other notions. In particular, we will look at results involving Jónsson groups and modules in
this section, concluding with the characterization of infinite, abelian, Jónsson groups: any such group is either finite or
a Z.p1/ group.

3
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Despite this focus on modules and groups, often these results can be thought of as results about the underlying ring.
In some sense, the results allow us to talk a little more about the rings themselves through their Jónsson modules, and
hence talk about Jónsson modules through their ring’s structure. ๠is in turn will allow us to talk about Jónsson, abelian
groups as Z-modules, and draw on results about Z as a ring.

Despite how simple Jónsson vector spaces are, Jónsson modules are much more complicated. In general, there are
only partial results that characterize Jónsson modules. For example, we have the following result.

2 • 1. Result

LetM be a module. IfM is infinite and Jónsson, thenM is indecomposible.

Proof .:.
LetM D N ˚H for proper submodules N;H ¨ M . AsM is infinite, one of the two N ,H must be infinite.
But through basic cardinal arithmetic,

jM j D jN ˚H j D jN j � jH j D max.jN j; jH j/.
SinceM is Jónsson, both jN j < jM j and jH j < jM j so that max.jN j; jH j/ < jM j. ๠e resulting jM j < jM j

is of course a contradiction. a

More interesting results will follow when we restrict our view to somewhat “nice” rings: commutative rings. ๠e
following are two results about Jónsson modules over commutative rings. We will always restrict our focus from now
on to commutative rings, because Z is one of these, and abelian groups are Z-modules.

2 • 2. Result

Let R be a commutative ring, and M a (left) R-module. If M is infinite and Jónsson, then every r 2 R has
rM D ¹0M º or rM D M .

Proof .:.
Let r 2 R and consider rM , a submodule ofM becauseR is commutative: rnCs � .rm/ D r � .nCsm/ 2 rM .

Consider N D ¹n 2 M W rn D 0M º. Note that as a kernel of the homomorphism ' D m 7! rm, we get that
M=N Š rM D im'. ๠is then implies that jrM jjN j D jM=N jjN j D jM j.

Now since we’re dealing with infinite cardinals, jrM jjN j D max.jrM j; jN j/. But as infinite cardinals, this
implies jN j D jM j or jrM j D jM j. BecauseM is Jónsson, this means either N D M or rM D M . In the
first case, rM D ¹0M º, and in the second, rM D M . a

๠is result allows us to conclude things about the rings by viewing them as modules over themselves. ๠e next result
is just a neat aside that characterizes infinite fields.

2 • 3. Result

Let R be an infinite, commutative ring. ๠us R is a field iff R is a Jónsson R-module.

Proof .:.
(only if) Suppose R is a field. ๠us R, as an R-module, is a 1-dimensional vector space. So by Result 1 • 8,

R is a Jónsson R-module.
(if) If R is a Jónsson R-module, then by Result 2 • 2, every r 2 R has rR D ¹0Rº or rR D R. Fix an

arbitrary r 2 R n ¹0º. Since 1R 2 R, we have r 2 rR, meaning that rR ¤ ¹0Rº, and so rR D R.
But then there is some � 2 R where r� D 1R for r ¤ 0R. So every element of R n ¹0º is a unit, and
R is a field. a

๠is next result makes a push towards a remarkable characterization of infinite, abelian, Jónsson groups. Again, we
can have results about the ring through Jónsson modules. ๠is also marks a shift in focus towards Jónsson groups. In
particular, we will consider abelian groups.

4
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2 • 4. Result

Let R be a commutative ring, andM a (left) R-module. IfM is infinite and Jónsson, then
AnnR.M/ D

®
r 2 R W rM D ¹0M º

¯
C R

is a prime ideal of R.

Proof .:.
It’s clear this is an ideal of R: r; s 2 AnnR.M/ implies .�r C s/M D �.rM/C sM D ¹0M º for any � 2 R.
It’s also clear that AnnR.M/ ¤ R, since otherwiseM D 1R �M D ¹0M º, contradicting thatM is infinite.

It follows very quickly from Result 2 • 2 that AnnR.M/ is prime. Explicitly, suppose that rsM D ¹0M º, but
r; s … AnnR.M/. By Result 2 • 2, rM D sM D M . ๠us rsM D rM D M , which is not ¹0M º since
M is infinite, a contradiction with the hypothesis that rsM D ¹0M º. ๠us r or s 2 AnnR.M/, meaning
AnnR.M/ C R is prime. a

Again, the major result for us here is that these Z.p1/ are the only infinite, abelian, Jónsson groups. To prove this,
note that any abelian group can be viewed as a Z-module by taking n � g D g C � � � C g (or else �g � � � � � g) for
n 2 Z, g in the group. Using this operation, an abelian group is Jónsson iff it’s a Jónsson Z-module.

2 • 5. Result

Let G be an abelian group. ๠us G is Jónsson iff G is a Jónsson Z-module.

Proof .:.
(only if) Let G be a Jónsson group. Let H ¨ G be an arbitrary proper Z-submodule. H is closed under

the group operation of addition (and subtraction), so that H is a subgroup. Because G is a Jónsson
group, jH j < jGj. BecauseH was arbitrary, G is a Jónsson Z-module.

(if) Suppose G is a Jónsson Z-module. Let H < G be an arbitrary proper subgroup which is then
closed under the group operation of addition (and subtraction). For every n 2 Z and h1; h2 2 H ,
nh1 Ch2 D ˙h1 ˙� � �˙h1 Ch2 2 H . SoH is a proper submodule. SinceG is a JónssonZ-module,
jH j < jGj. BecauseH was arbitrary, G is a Jónsson group. a

๠e following result then gives us the characterization of infinite, abelian, Jónsson groups via the results given above.
๠is characterization shows that all infinite, abelian, Jónsson groups are countable. ๠is does not mean, however, that
there are no uncountable Jónsson structures which can be thought of as abelian groups, Example 1 • 5 for instance.
First recall two results. ๠e first is relatively straightforward, but he second is a much more difficult result proven in
Appendix C.

2 • 6. Result (Recalled 2)

I C Z is a prime ideal iff I D ¹0º, or there is some prime p 2 N where I D Zp.

Proof .:.
(if) Clearly I D ¹0º is a prime ideal. Zp is a prime ideal since p is prime: mn 2 Zp means p j mn so

that p j m or p j n.
(only if) Suppose I C Z is prime. If I ¤ ¹0º, then there is a least p 2 I . Clearly Zp � I . Moreover, if

m; n 2 I then gcd.m; n/ 2 I since gcd.m; n/ is given by a Z-linear combination of m and n, and
I is closed under Z-linear combinations of its elements. Hence p is the gcd of all of I because any
gcd.I / ¤ p is less than p, contradicting that p is the least element of I . a

๠is also tells us that the maximal ideals of Z are the sets pZ when p 2 N is prime.

5
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2 • 7. Result (Recalled 3)

Let G be an infinite, abelian group. Suppose that for all n 2 Z n ¹0º, and g 2 G, n � x D g has a solution
of x 2 G. ๠erefore, there are cardinals n;m (possibly infinite), and primes pi 2 N for i � n where G ŠL

i�n Z.p1
i /˚

L
m Q.

If you know the terminology, this says a divisible abelian group is the direct sum of copies of various Z.p1/ and
copies of Q. ๠is is why the seemingly arbitrary Z.p1/ is important in our characterization.

2 • 8. Result

Let G be an infinite, abelian group. ๠us G is Jónsson iff there is some prime p 2 N where G Š Z.p1/.

Proof .:.
Result 1 • 4 gives the “if” direction. So we must show if G is Jónsson, then G Š Z.p1/ for a prime p 2 N.

Suppose G is a Jónsson group. By Result 2 • 5, G is a Jónsson Z-module. Since G is infinite, by Result 2 • 4,
AnnZ.G/ D ¹n 2 Z W nG D ¹0Gºº is a prime ideal of Z. Recalled 2 (2 • 6) implies that either AnnZ.G/ D ¹0º,
or there is some prime p 2 N where AnnZ.G/ D Zp.

Claim 1

๠ere is no prime p 2 N where AnnZ.G/ D Zp.

Proof .:.
Suppose not: AnnZ.G/ D Zp for some prime p 2 N. Note that then Z=pZ is a finite field. We can
then consider G as a vector space over Z=pZ. But G is a Jónsson module, and so a Jónsson vector
space. By Result 1 • 8, G is either finite or else 1-dimensional.

Since G is infinite by hypothesis, G is 1-dimensional. But Z=pZ is a finite field. By Recalled 1 (1 • 7),
jGj D jZ=pZj1 < ℵ0, contradicting that G is infinite. a

๠us we must have AnnZ.G/ D ¹0º, and so for all n 2 Z, nG D G. ๠is implies that we can always solve the
equation n � x D g for any fixed 0 ¤ n 2 Z and g 2 G. So by Recalled 3 (2 • 7), we get that G is the direct
sum of copies of various Z.p1

i /s, and Q:

G Š
M
i�n

Z.p1
i /˚

M
m

Q

for primes pi 2 N. How many copies of Z.p1
i /s and Q, you might ask? Well since G is an infinite Jónsson

Z-module, Result 2 • 1 tells us that G is indecomposible. So there is really only one copy: G is isomorphic to
either Z.p1/ for some prime p 2 N, or Q.

But Q has an infinite subgroup: Z < Q. Hence Q isn’t Jónsson, and so G 6Š Q. ๠erefore G Š Z.p1/ for
some prime p 2 N. a

As said before, the above result tells us via Result 1 • 3 that any abelian, Jónsson group G is either finite, or jGj D

jZ.p1/j D ℵ0 is countably infinite. And so in either case, G is countable. But what about uncountable and non-
abelian groups? Are there any countable non-abelian Jónsson groups? Are there any uncountable Jónsson groups?
๠e answer to both these questions was answered “yes”, the first by Ol’shanskii in [3], and the second by Shelah in [5],
but the proofs of these are far too involved to present here.

So there are no uncountable abelian Jónsson groups, but there are uncountable Jónsson groups. A remarkable result
shown in the next section Section 3 shows that this answer differs, however, for fields: there are no uncountable Jónsson
fields at all.

6
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Section 3. Uncountable Fields

๠e goal of this section will be to show that there are no uncountable, Jónsson fields. ๠e heart of the proof of the result
relies on looking at transcendence bases over the prime field of the characteristic of the field in question. In preparation
for this, we must prove some lemmas on this background material.

3 • 1. Result

Let F be a field of characteristic p. If p D 0, then Q embedds into F . Otherwise Z=pZ embedds into F .

Proof .:.
๠e essence of this proof is to consider the field generated by 1F , being Q if p D 0, and Z=pZ otherwise.

Let ' W Z ! F be defined by '.n/ D n �1F D ˙1F ˙ � � � ˙1F repeated addition (or subtraction). ๠is is easily
checked to be a homomorphism. By the first isomorphism theorem for rings, ker' C Z, and im' Š Z= ker'.

If p > 0, then ker' D pZ, a maximal ideal of Z, and so im' Š Z=pZ is a subfield of F .

If p D 0, then ker' D ¹0º. Now consider the homomorphism  W Q ! F defined by  .m=n/ D '.m/ �

'.n/�1. Note that  .m=n/ D 0 iff '.m/ D 0 iff m 2 ker' D ¹0º. Hence ker D ker' D ¹0º. Again by the
first isomorphism theorem for rings, im Š Q= ker D Q= ker' Š Q. a

In essence, we’re showing the existence of the minimal subfield generated by 1F . ๠e other elements of the field F
then won’t be “reachable” by 1F in a sense described below.

3 • 2. Definition

Let F be a field, and E � F be a subfield. B � F is a transcendental basis of F over E iff
(1) for all polynomials p 2 EŒx1; x2; :::� and b1; :::; bn 2 B , p.b1; :::; bn/ D 0F iff p D 0F ; and
(2) F is algebraic over E.B/.

Useful for us is that every field has a transcendental basis over any subfield. ๠is will be useful in calculating cardinality.
To clarify, the notation E.B/ is the field generated by adjoining B to E. ๠e polynomial ring EŒB� then uses a slightly
different notation, but is connected, since E.B/ is isomorphic to the field of fractions of EŒB�.

3 • 3. Result

Let F be a field, and E � F a subfield. ๠erefore, there is a transcendental basis B � F over E.

Proof .:.
We explicitly construct one via transfinite recursion. If F is algebraic over E, then we are done. Otherwise, for
each ordinal ˛, define

b˛ 2 F n E
�
¹bˇ W ˇ < ˛º

�
,

where b˛ is not the root of any non-zero polynomial p.x/ with coefficients in EŒ¹bˇ W ˇ < ˛º�Œx�. If no such
b˛ exists, then F is algebraic over E.¹bˇ W ˇ < ˛º/.

๠is sequence of b˛ 2 F will have some length ı. Furthermore, any polynomial p 2 EŒx1; :::; xn� satisfying
p.b˛1

; :::; b˛n
/ D 0F will have a maximal ˛ among these b˛ . So the polynomial replacing b˛ with x,

�.x/ D p.b˛1
; :::; x; :::; b˛n

/ 2 EŒ¹bˇ W ˇ < ˛º�Œx�,
has �.b˛/ D 0F , contradicting our choice of b˛ . Hence B D ¹b˛ W ˛ < ıº is a transcendental basis over E. a

๠e above proof is essentially the same as the proof that every vector space has a basis. ๠e two ideas are linked
together, but ultimately aren’t explored here. It will be useful to actually construct the field E.B/ from E and B and
prove some things about it.

7
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3 • 4. Result

Let F be a field, E � F a subfield, and B � F a non-empty subset. ๠erefore jE.B/j � jEj � jBj � ℵ0.

Proof .:.
Because E.B/ is isomorphic to the field of fractions of EŒB�, we have that jE.B/j � jEŒB�j2. After multiplying
by ℵ0, we get by basic cardinal arithmetic that

jE.B/j � jEŒB�j2 � ℵ0 D jEŒB�j � ℵ0.
So now we need to bound the cardinality of EŒB�.

Note that every element of EŒB� will be a polynomial of multiple variables with coefficients in E evaluated at
elements of B . Each such polynomial can be identified with a finite sequence of elements of E. In the case that
E is finite, the number of such polynomials is ℵ0. In the case that E is infinite, the number of such polynomials
is at most X

n2N

jEj
n

D
X
n2N

jEj D jEj � ℵ0.

Hence the number of such polynomials is at most jEj � ℵ0. Similarly, each polynomial can be evaluated by a
finite sequence of elements of B . ๠e same reasoning tells us that the number of such evaluations is at most
jBj � ℵ0. Hence

jE.B/j � jEŒB�j2 � jEj
2

� jBj
2

� ℵ0 D jEj � jBj � ℵ0 a

Now a result not proven here is that the cardinality of any transcendental basis of a fixed F over a fixed E � F is the
same. ๠is cardinality is referred to as the transendence degree, and is denoted trdegE F . Instead, to avoid proving this
result directly, we will just fix a B , and talk about jBj.

๠at said, the following result will tell us that trdegE F is always the same for an infinite field F when jEj < jF j, and
F is uncountable.

3 • 5. Result

Let F be a field, E ¨ F a subfield, and B a transcendental basis of F over E. Suppose F is infinite. ๠erefore
jF j D jEj � jBj � ℵ0.

Proof .:.
Clearly jEj � jBj �ℵ0 D max.jEj; jBj;ℵ0/ � jF j as E; B � F and jF j is infinite. So it suffices to show the other
inequality: jF j � jEj � jBj � ℵ0.

As a transcendental basis, F is algebraic over E.B/. Hence the elements of F can be identified as the roots
of polynomials in E.B/Œx�. Every polynomial in E.B/Œx� will have finitely many solutions. ๠e number of
polynomials with coefficients in E.B/ is jE.B/j � ℵ0. Hence by Result 3 • 4,

jF j � jE.B/j � ℵ0 � jEj � jBj � ℵ0.
And so we get equality. a

Now we can show the main result for fields.

3 • 6. Result

Let F be a field. Suppose jF j > ℵ0. ๠erefore F isn’t Jónsson.

Proof .:.
Let E � F be as in Result 3 • 1 with B be a transcendental basis of F over E as in Result 3 • 3. Since jEj �

ℵ0 < jF j, basic cardinal arithmetic with Result 3 • 5 tells us that jBj D jF j.

Let b˛ 2 B for ˛ < ı. Consider P D B n ¹b˛º. Note that E.P / � E.B/ � F is a subfield.

8
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Furthermore, b˛ … E.P /, since this would contradict construction of B as in Result 3 • 3. Explicitly, let
b˛ D p.b1; :::; bn/=q.b1; :::; bn/ for p; q 2 EŒx1; :::; xn�. ๠e non-zero polynomial

�.x1; :::; xnC1/ D p.x1; :::; xn/ � xnC1 � q.x1; :::; xn/ 2 EŒx1; :::; xnC1�

then has �.b1; :::; bn; b˛/ D 0F , contradicting that B is a trascendental basis of F over E.

Since jBj D jF j > ℵ0 is infinite, jP j D jBj. Result 3 • 4 tells us that
jE.P /j � jEj � jP j � ℵ0 D jP j.

Since P � E.P /, jP j � jE.P /j. So jE.P /j D jP j D jF j. But then E.P / ¨ F is a subfield of F of the same
cardinality. Hence F isn’t Jónsson. a

๠e result can be seen fairly easily for things like C, since R ¨ C and jRj D jCj. But we can keep reducing in this
fashion for any field of any uncountable cardinality. As said before, in the face of Example 1 • 9, this tells us that the
only Jónsson fields of characteristic 0 are isomorphic to Q.

๠e above proof can also be generalized to certain other kinds of rings. Regardless, this continues the point that such
large Jónsson structures are quite rare to find, and are very difficult to construct outright. It seems many common
notions of algebraic structures, like abelian groups, fields, and vector spaces, are almost never Jónsson. Coming up
with large examples of such structures ranges from impossible to requiring incredible creativity.

9
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Appendix 1. Cardinal Arithmetic Background

People should be familiar with what cardinals are at this point, but this appendix will still give the general idea. After
this necessary background, some basic results are given, but are not proven here. Mostly only a few results are used,
but they are used here rather frequently.

Cardinal numbers can be thought of as the canonical elements of the equivalence classes of the universe modulo
bijection. More concretely, however, they are the sets

0; 1; 2; 3; :::;ℵ0;ℵ1; :::;ℵ! ;ℵ!C1; :::;ℵ!C! ;ℵ!C!C1; :::

which have no upper bound: for every cardinal, there is a larger one. In fact, there is a successor cardinal: � < �C.
๠e ℵ numbers are the infinite cardinals. ℵ0 D jNj is the first infinite cardinal. ℵ1 D ℵC

0 is the next, and so on. ๠ey
are indexed by ordinal numbers, which are just canonical elements of the equivalence classes of well-orderings. For
example, the order of N is !. ๠is is just notation, however.

๠e following defintions are used for operations. Note that AtB D .A� ¹0º/[ .B � ¹1º/ denotes the disjoint union:
tagging the elements ofAwith a 0, and the elements ofB with a 1 so that the tagged sets are disjoint. For larger unions,
we just do the same thing, but with more tags. A � B denotes the cartesian product.

1 • 1. Definition

Let �, �, and �i for i 2 I be cardinals. Define
� C � D j� t �j

� � � D j� � �jX
i2I

�i D

ˇ̌̌̌
ˇG
i2I

�i

ˇ̌̌̌
ˇY

i2I

�i D

ˇ̌̌̌
ˇY
i2I

�i

ˇ̌̌̌
ˇ (the cardinality of the cartesian product)

Œ��<!
D ¹X � � W jX j < ℵ0º.

๠e following results aren’t horribly difficult to prove, but can be quite long.

1 • 2. Result (Cardinal Arithmetic Basics)

Let n 2 N n ¹0º be a finite cardinal, �, �i for i 2 I be infinite cardinals, and c an arbitrary cardinal (finite or
infinite). ๠erefore

1. C and � are associative, commutative, and distributive;
2. c � � D cn � �n D c C � D max.c; �/;
3.

P
i2I �i �

Q
i2I �i (König’s theorem);

4.
ˇ̌
Œ��<!

ˇ̌
D �;

5. c < 2c for c ¤ 0.

11
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Appendix 2. Vector Space Cardinality

2 • 1. Result (Recalled 1)

For V a vector space over a field F of dimension dimV D d .

jV j D

´
jF jd if d < ℵ0

max.jF j; d / if d � ℵ0

.

Proof .:.
If d < ℵ0, then let B D ¹v1; :::; vd º be a basis of V . We then have that any element of V can be written
uniquely as a sum

Pd
iD1 civi . Hence we can associate v 2 V with the d -tuple .c1; :::; cd / for ci 2 F . ๠is

yields a bijection from V to F d . ๠e cardinality of F d is just jF jd so that jV j D F d , confirming the result for
finite dimensional vector spaces.

Suppose V is infinite dimensional, and let B D ¹vi W i < dº be a basis so that jBj D d > ℵ0. Each element
of V is still uniquely determined by the coefficients of basis elements. Hence for each v 2 V there is a unique
function v from d to F which satisfies v D

P
i<d v.i/vi . But not every function in d F D ¹f W d ! F º

corresponds to an element v 2 V , since we’re only taking finite sums. Hence each element of v corresponds to
a function v 2 d F with finite support. Let

V D
®
f W d ! F W

ˇ̌
¹˛ < d W f .˛/ ¤ 0F º

ˇ̌
< ℵ0

¯
,

so that jV j D jVj.

Let ŒX�<! be the set of finite subsets of a set X . Each function f 2 V is given by f restricted to the set
¹˛ < d W f .˛/ ¤ 0F º 2 Œd �<! . Hence V is in bijection with the union

W WD
[

S2Œd�<!

S
�
F n ¹0F º

�
,

which can be seen by extending any f 2 W to a function on d by setting all values not in the domain of f to
0F . Hence jV j D jVj D jWj.

For each S 2 Œd �<! , there are exactly jF jjS j elements. ๠rough basic cardinal arithmetic, jŒd �<! j D d , and the
cardinality of the union is less than the sum of the cardinalities:

jWj �
X

S2Œd�<!

jF j
jS j.

Assuming that F is finite, jF jjS j � ℵ0 for any S 2 Œd �<! . Hence in this case, because d � ℵ0,
jV j D jWj �

X
S2Œd�<1

ℵ0 D
X
˛<d

ℵ0 D dℵ0 D d D max.jF j; d /.

Assuming that F is infinite, jF jjS j D jF j for S 2 Œd �<! . Hence in this case
jV j D jWj �

X
S2Œd�<1

jF j D
X
˛<d

jF j D d jF j D max.jF j; d /.

So that we always have jV j � max.jF j; d / for d � ℵ0.

But jV j � max.jF j; d /, since any non-zero v 2 V will yield Fv � V so that jFvj D jF j � jV j. And B � V

yields jBj D d � jV j. Hence jV j D max.jF j; d /. a

12
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Appendix 3. Divisible, Abelian Groups

Now before we get into proving the result of Recalled 3 (2 • 7), it will be useful to define what it means for a group
to be divisible. It will be also very useful to prove several lemmas. To emphasize what is important at a glance, the
lemmas, definitions, and results are enclosed in black rectangles instead of grey ones. ๠e following definition is given
only for abelian groups, but the idea makes sense in general. Note that multiplication by an integer is just repeated
addition of the group element.

3 • 1. Definition

Let G be an abelian group. G is divisible iff for every g 2 G, and n 2 Z n ¹0º, there is some x 2 G where
n � x D g.

Now we present two lemmas which tell us why Recalled 3 (2 • 7) talks about Q and Z.p1/ groups. Both of these
lemmas are quite long, and are the meat of the structure theorem called Recalled 3 (2 • 7). ๠e lemmas talk about the
building blocks of divisible, abelian groups. First we will show that the torsion free building blocks are isomorphic to
Q under addition.

3 • 2. Lemma

LetG be an infinite, abelian, divisible group. SupposeG is torsion free, andG has no divisible, proper, non-trivial
subgroups. ๠erefore G Š Q under addition.

Proof .:.
Fix g 2 G n ¹eGº. Because G is divisible, for any m=n 2 Q, n � x D m � g has a solution. ๠rough choice, let

m=n witness n � 
m=n D m � g. With this, define the map

'.1/ D g,

'
�m
n

�
D 
m=n.

๠e idea being that 
m=n is likem=n �g, and n'.m=n/ D mg. ๠is map ' is well-defined, since ifm=n D w=u,
then mu D wn, and so, because mu and wn are non-zero,

mu � 
m=n D wn � 
m=n D wm � g D m.w � g/ D mu � 
w=u.
) 
m=n D 
w=u.

From this we can show that ' is in fact an isomorphism. First we must show that ' is a homomorphism.

Claim 1

' is a homomorphism.

Proof .:.
First we must show that '.0/ D eG . Clearly if m D 0, then m � g D eG and so n � 
0;n D eG . Since G
is torsion-free, this implies 
0;n D eG , and hence '.0/ D 
0;n D eG .

Now we must show '.m=nC w=u/ D '.m=n/C '.w=u/. Note that nu ¤ 0 since both n; u ¤ 0.

nu � '
�m
n

C
w

u

�
D nu � '

�
muC wn

nu

�
D .muC wn/ � g D mu � g C wn � g

D un � '
�m
n

�
C nu � '

�w
u

�
D nu �

�
'

�m
n

�
C '

�w
n

��
a

Claim 2

' is a bijection.

13
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Proof .:.
To show that ' is injective, suppose that '.m=n/ D '.w=u/. ๠is implies that

nu � '.m=n/ D mu � g

nu � '.w=u/ D wn � g

๠ereforemu �g D wn �g so that .mu�wn/ �g D eG . Since g ¤ eG andG is torsion free, this implies
mu � wn D 0 and hence mu D wn: m=n D w=u.

To show that ' is surjective, note that otherwise im' < G is a divisible subgroup of G, contradicting
that G has no non-trivial, divisible, proper subgroups. a

๠us ' is an isomorphism, and so G Š Q. a

Now we will show that the non-torsion-free building blocks are isomorphic to some Z.p1/ group. After that, we can
start to decompose infinite, abelian, divisible groups into building blocks: minimal divisible subgroups.

3 • 3. Lemma

Let G be an infinite, abelian, divisible group. Suppose G is not torsion free, and G has no divisible, proper,
non-trivial subgroups. ๠erefore there is some prime p 2 Z where G Š Z.p1/.

Proof .:.
๠ere are many different presentations of Z.p1/. For this proof, note that Z.p1/ is isomorphic to the free
abelian group

hg1; g2; ::: W p � giC1 D gi ; & p � g1 D ei.
๠e proof will proceed in three major steps. First, we will show every element has some order pi for a fixed
prime p 2 N. Second, we show every pn is the order of some element of G. ๠ird, we build an isomorphism
from Z.p1/ to G.

Claim 1

๠e order of every element of G is finite.

Proof .:.
Let F � G be the set of elements of G with infinite order along with eG :

F WD
®
f 2 G W 8n 2 Z.n � f ¤ eG/

¯
[ ¹eGº.

If F is trivial, then we are done. So suppose F ¤ ¹eGº. Our goal is to show that F is divisible.

Let f 2 F n ¹eGº and n 2 Z be fixed. Suppose n � x D f has no solution x 2 F . Since G is divisible,
there is then a solution x 2 G n F . ๠erefore x has finite order �, whence eG D n� � x D � � f

contradicts that f has infinite order.

๠us F is divisible. Since G has no divisible, non-trivial, proper subgroups, this implies F D G,
contradicting that G is not torsion free. a

Claim 2

๠ere is some prime p 2 N such that the order of every g 2 G is a power of p.

14
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Proof .:.
For each prime p 2 N n ¹0º let Pp D ¹g 2 P W 9n 2 N.pn � g D eG/º. ๠is is a subgroup Pp 6 G,
since if g; h 2 Pp , then for png � g D pnh � h D eG , we have

pngCnh.g � h/ D pnh � eG � png � eG D eG .
By Claim 1, all elements have finite order. In particular, applying the Sylow theorems to any ¹eGº <

hgi < G, not all Pp are trivial.

Let p > 0 be the least such that Pp ¤ ¹eGº. We will show that Pp is divisible, implying that Pp D G,
and hence the claim.

Fix g 2 Pp n ¹eGº of order p� , and let n > 0 be the least such that n � x D g has no solution x 2 Pp .
Since G is divisible, let x 2 G n Pp be a solution to n � x D g with order �. ๠us

eG D �n � x D � � g so that p�
j �,

eG D p�g D p�n � x so that � j p�n.
In particular, write � D p�m for m > 0, and p�n D �w for w > 0. ๠ese two tell us that n D mw.

Note thatw �y D g has a solution y 2 Pp by the minimality of n > w. Let p
 be the order of y. Again,
we have that

eG D p�g D p�w � y

so that py j p�w. ๠is implies that w is a power of p. By the same argument, m is a power of p. ๠us
n D mw is a power of p, and finally, � j p�n implies that � is a power of p, contradicting that x … Pp .
Hence no such n can exist, and Pp is divisible, meaning thatG D Pp sinceG has no proper, non-trivial,
divisible subgroups. a

We can then conclude that G is a p-group. Define by recursion a sequence
x0 D ¹eGº,
x1 2 G n ¹eGº has order p,
xiC1 2 G satisfies p � xiC1 D xi .

Such an x1 exists, because G is a p-group. Since G is a divisible group, such a sequence exists. Note that
hx1; :::i is a divisible group. Hence, becauseG has no proper, non-trivial, divisible subgroups,G D hx1; x2; :::i.
But then

G D hx1; x2; :::i Š hg1; g2; ::: W p � giC1 D gi ; & p � g1 D ei Š Z.p1/ a

๠e next several lemmas will be about getting divisible groups out of old ones.

3 • 4. Lemma

Let G be a group, andH < G a subgroup. ๠erefore there is a maximal K 6 G withH \K D ¹eGº.

Proof .:.
๠is can be seen through Zorn’s lemma: consider the set of subgroups H WD ¹K 6 G W H \K D ¹eGºº.

Trivially, ¹eGº 2 H . Moreover, any chain of subgroups K1 6 K2 6 � � � 2 H has the union as a subgroup of
G of trivial intersection with H , meaning the union is in H . Hence by Zorn’s lemma, there is a �-maximal
element K 2 H . a

3 • 5. Lemma

Let G be a divisible, abelian group. IfH 6 G is divisible, there is a K 6 G where G D H CK Š H ˚K.
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Proof .:.
As per Lemma 3 • 4, let K 6 G withH \K D ¹eGº be maximal. Note that thenH ˚K Š H CK, and so it
suffices to show G D H CK. We consider two cases on K.

Claim 1

If K D ¹eGº, then G D H CK D H .

Proof .:.
Suppose K D ¹eGº but H ¨ G, and let g 2 G n H witness this. Note that H \ hgi ¤ ¹egº since
otherwise hgi contradicts the maximality ofK D ¹eGº. Hence there is some least natural number n > 0
where n � g 2 H .

By hypothesis, H is divisible, and so there is some x 2 H with n � x D n � g so that eG D n � .x � g/.
Note that x � g … H so we can consider the subgroup hx � gi < G. Note that h 2 H \ hx � gi iff
h D z.x � g/ for some z 2 Z. But then zg D zx � h 2 H . ๠is then implies z � n. Division yields
z D qnC Œz� for some Œz� < n. But then we still have

z.g � x/ D qn � .g � x/C Œz�.g � x/ D eG C Œz�.g � x/ D Œz�.g � x/,
and hence Œz�g D Œz�x � h 2 H , contradicting that n is the least such that n � g 2 G. Hence no such g
exists, and G D H C ¹eGº D H CK. a

Claim 2

If K ¤ ¹eGº, then G D H CK.

Proof .:.
Suppose G ¤ H C K. Note that the quotient H Š .H C K/=K < G=K is a subgroup. By Lemma
3 • 4, there is a maximal M 6 G=K–and by the third isomorphism theorem, a C=K 6 G=K where
K 6 C 6 G–where

¹eG=Kº D
H CK

K
\
C

K
D
.H \ C/CK

K
.

Hence H \ C � K so that H \ C � H \K D ¹eGº. Since K 6 C is maximal, C D K. But since
.HCK/=K Š H , the same proof as in Claim 1 applies to tell us thatC=K D K=K D ¹eG=Kº 6Š ¹eGº,
a contradiction. a

In either case, G D H CK, which is isomorphic toH ˚K sinceH \K D ¹eGº. a

3 • 6. Lemma

Let G be a divisible, abelian group, andH 6 G a subgroup. ๠erefore G=H is divisible.

Proof .:.
G=H is a group since G is abelian so that any subgroupH 6 G is normal in G.

Let gCH 2 G=H , and n 2 N. SinceG is divisible, n �x D g has a solution x 2 G. But becauseG is abelian,
it follows that n � .x CH/ D n � x CH D g CH . Hence G=H is divisible. a

3 • 7. Lemma

LetG be an infinite, divisible, abelian group. ๠erefore there is a subgroup 0 < H 6 G with no divisible subgroup
¹eGº < K 6 H .
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Proof .:.
Consider the setH D ¹¹eGº < H 6 G W H is divisibleº, which is non-empty sinceG 2 H andG ¤ ¹eGº. We
will apply Zorn’s Lemma to H ordered by reverse-inclusion: the maximal elements are �-minimal. Consider
any chain ¹Hn W n < �º of length � in H : for all ˛; ˇ < �,

˛ < ˇ ! Hˇ < H˛ .
By Lemma 3 • 4, for each n < �, there is a Cn 6 G where G Š Hn ˚ Cn. Since the Hns are decreasing, and
Cn \Hn D ¹eGº for all n < �, these Cns are increasing: for all ˛; ˇ < �,

˛ < ˇ ! C˛ < Cˇ .
By Lemma 3 • 6, each Cn Š G=Hn is divisible. Hence the union C D

S
n<� Cn is also divisible. ๠erefore,

by Lemma 3 • 5, there is anH 6 G whereG D H CC Š H ˚C . By Lemma 3 • 6,H is divisible. Moreover,
H < H˛ for each ˛ by construction of C and the Cns.

๠erefore, by Zorn’s lemma, there is a maximal (�-minimal) element in H . Such an element H 6 G has no
divisible subgroup ¹eGº < K 6 H . a

In essence, this Lemma 3 • 7 says that every infinite, abelian group can be broken down into divisible groups with no
divisible subgroups. With this, we can actually begin to prove Recalled 3 (2 • 7), also called the divisible, abelian group
structure theorem. Note that although the result is stated only for infinite groups, it’s not too difficult to see that any
divisible group is either trivial or else infinite. So the result can be easily generalized.

3 • 8. Result (Recalled 3)

Let G be an infinite, abelian group. Suppose G is divisible. ๠erefore, there are cardinals n;m (possibly infinite),
and primes pi 2 N for i � n where

G Š
M
i�n

Z.p1
i /˚

M
m

Q.

Proof .:.
By Lemma 3 • 5, For eachH 6 G, let C.H/ 6 G be such that G D H C C.H/ Š H ˚ C.H/. Note that by
Lemma 3 • 6, C.H/ Š G=H is divisible. Similarly, for each divisible group K > ¹eGº, letM.K/ 6 K be a
subgroup with no non-trivial, divisible subgroup as per Lemma 3 • 7. Now define by transfinite recursion

H0 D M.G/

H˛ D

´
M

�
C

�P
�<˛ H�

��
if

P
�<˛ H˛ ¤ G

G otherwise
By construction,

P
�<˛ H� Š

L
�<˛ H� forH˛ ¤ G. ๠is is because once

P
�<˛ H˛ D G, thenH
 D G for

all 
 � ˛. If H˛ ¤ G, then for � < ˛, H� 6 C.
P


<� H
 / must have trivial intersection with each H
 for

 < � .

Note also that there must be some ˛ for whichH˛ D G. ๠is is becauseH CC.H/ D G, where ¹eGº < H <

G, implies ¹eGº < C.H/ < G, meaning thatM.C.H// exists and is non-trivial. In essence, C
 D G n �<
H�

is a strictly decreasing sequence of subsets of G, which must have length less than, say, 2jGj.

So consider the least ˛ for which this happens. We then have that G Š
L

�<˛ H� since by construction,P
�<˛ H� D G, and the argument given above tells us that for �; 
 < ˛,H� \H
 D ¹eGº for � ¤ 
 . But note

that by Lemma 3 • 2 and Lemma 3 • 3, each H
 2 ¹H� W � < ˛º must be isomorphic to either Q, or to Z.p1

 /

for some prime p
 2 N. Hence by reordering, and taking the appropriate cardinals for the ones isomorphic to
Q, and the ones isomorphic to a Z.p1/, we can conclude

G Š
M
�<˛

H� Š
M
i�n

Z.p1
i /˚

M
m

Q a
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